
1

Rotorcraft Dynamics Models for a Comprehensive Analysis

Wayne Johnson

Johnson Aeronautics
Palo Alto, California

Recent developments of the dynamics models for the comprehensive analysis CAMRAD II are
described, specifically advanced models of the geometry and material for the beam component,
and a force balance method for calculating section loads. Calculations are compared with
measurements for beams undergoing large deflection. Bearingless rotor stability and bending
loads calculations are compared with the results from a full-scale wind tunnel test. With a
reasonable number of beam elements representing the rotor blade, any large deflection effects are
captured by the rigid body motion (which is always exact), and a second-order model of the
beam element elastic motion is adequate. The deflection method gives unacceptable results for
the structural loads in practical cases, and even with uniform blade properties. The force balance
method described here gives good results for blade load, without requiring a large number of
nodes.

Notation.

A rotor disk area, πR2

CT rotor thrust, T /ρA(ΩR)2

L beam length

r blade radial station

R blade radius

u,v,w beam deflections in x, y, and z-axis directions

µ advance ratio, (flight speed)/ΩR

ρ air density

σ rotor solidity, (blade area)/A

Ω rotor rotational speed

Introduction

CAMRAD II is an aeromechanical analysis of
helicopters and rotorcraft that incorporates a combination
of advanced technology, including multibody dynamics,
nonlinear finite elements, and rotorcraft aerodynamics. For
the design, testing, and evaluation of rotors and rotorcraft;
at all stages, including research, conceptual design, detailed
design, and development; it calculates performance, loads,
vibration, response, and stability; with a consistent,
balanced, yet high level of technology in a single computer
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program; applicable to a wide range of problems, and a
wide class of rotorcraft. Such capability is essential for
helicopter problems, which are inherently complex and
multidisciplinary.

A comprehensive helicopter analysis must calculate
performance, loads, vibration, response, and stability. The
multidisciplinary nature of helicopter problems means that
similar models are required for all of these jobs. It follows
that a comprehensive analysis must have a rotor wake
model; account for drag and stall of the rotor blades;
include nonlinear dynamics of the rotor and airframe; and
model the entire aircraft. The analysis must perform trim,
transient, and flutter tasks. The trim task finds the
equilibrium solution (constant or periodic) for a steady
state operating condition. The operating condition can be
free flight (including level flight, steady climb or descent,
and steady turns), or constrained (such as a rotor in a wind
tunnel, with typically the thrust and flapping trimmed to
target values). It is usually necessary to identify the control
positions and aircraft orientation required to achieve the
specified operating condition. The transient task
numerically integrates the equations in time (from the trim
solution), for a prescribed excitation. The flutter task
obtains and analyzes differential equations for the system,
linearized about trim (probably by numerical perturbation).

A modern comprehensive analysis must be able to
analyze arbitrary configurations — whatever the designers
can invent. The system configuration must be defined and
changed by input to the analysis; it should not be
necessary to change the code as long as the required physics
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are available. The definition of the solution procedure must
be just as flexible as the definition of the configuration.
The solution procedure must be defined and changed by
input to the analysis; it should not be necessary to change
the code as long as the required methods are available.
CAMRAD II uses a building-block approach to achieve
flexibility in the model of the dynamic and aerodynamic
configuration, and in the solution procedure. The
mathematical model of the kinematics, dynamics, and
response allows nonlinearities (structural, aerodynamic, and
kinematics); and arbitrary large motion, including rigid
body motions and large rotations of components relative to
each other. Hence CAMRAD II can model the true
geometry of a rotorcraft, including multiple load paths
(such as a swashplate and control system, lag dampers,
tension/torsion straps, and bearingless rotors); vibration
control devices (such as pendulum absorbers or active
control); arbitrary elastic axis and arbitrary hinge order;
drooped and swept tips; and dissimilar blades. The
building-block approach, separating the specification of the
configuration, the aeromechanical model, and the solution
procedure, is essential for expandability of the analysis.
Otherwise the smallest change involves the entire analysis,
and growth becomes increasingly harder as each new feature
is added. The building-block approach also leads naturally
to more general and more rigorous models. For ease of use,
a shell is provided to build typical rotorcraft and rotor
models, while the core input capability always gives
complete flexibility to define and revise the model. The
system pieces (building blocks) constitute the core
analysis. The rotorcraft shell constructs the core input for
an aircraft with one or two or more rotors; in free flight or
in a wind tunnel; and an N-bladed rotor, with an articulated,
hingeless, teetering, gimballed, or bearingless hub; perhaps
with a swashplate. The aerodynamic model includes a wake
analysis to calculate the rotor nonuniform induced-
velocities, using rigid, prescribed or free wake geometry.
CAMRAD II is described in references 1 and 2.

Flexibility and generality of the system configuration
are obtained by assembling standard components with
standard interfaces, and solving the system using standard
procedures. Components perform most computations
associated with the physics of the model of the system. So
components are the focus of modelling issues, including
the empiricism and approximations needed for a practical
model of many real systems. Development of an improved
model requires the development of a new component,
which will fit into the existing analysis framework.

This paper describes recent developments of the
dynamics models for the comprehensive analysis
CAMRAD II. The focus is on features of the beam
component: advanced models of the geometry and material,
and a force balance method for calculating section loads.

Beam Element Component

For all structural dynamic components of CAMRAD II,
the component rigid body motion can be large, and the
kinematics of the interfaces and rigid body motion are
always exact. For the beam component, the elastic motion
is represented by the deflection, extension, and torsion of
the beam axis. With the assumption of small strain, beam
theory produces a linear relationship between the section
structural loads and the strain measures (such as curvature).

The rigid motion describes the motion of one end of the
beam. The elastic motion is measured relative to the rigid
motion. Thus the model does not use nodal coordinates as
degrees of freedom. The component can have any number
of joints, connections, interfaces, and sensors defined.
Typically joints and connections are defined in a beam
section (a plane normal to the bent beam axis).

Beam Element Models

The beam component implements the following three
geometric models. (a) The kinematics of the beam elastic
motion, including the strain measures, can be exact. The
derivation of the model with exact kinematics was
influenced by references 3 and 4. (b) For an almost-exact
model, a second-order approximation is used for the
extension and torsion produced by bending. (c)
Alternatively, the equations of motion can retain only
second-order effects of elastic motion in the strain energy
and kinetic energy, restricting the elastic motion to
moderate deflection. These second-order approximations do
not however compromise the correctness of the kinematics
at interfaces.

The beam component implements two structural
models. The first structural model is beam theory for
anisotropic or composite materials including transverse
shear deformation, the undistorted beam axis straight
within the component. This development draws on the
work of references 5 to 8. In addition to treating
anisotropic or composite materials, this model also
eliminates the assumption that an elastic axis exists. The
effects of cross-section warping and transverse shear are
included in the section structural properties; their effects on
the inertial forces and interface geometry are neglected. Any
variables describing the warp amplitude are eliminated by
expressing them in terms of the strain measures. This
treatment of warp might be a concern with open sections,
or restrained warping at end conditions. Transverse shear is
introduced by variables that describe the rotation of the
cross-section relative the plane perpendicular to the bent
beam axis. Good results have been obtained using reduced
section properties (refs. 9 to 11), so a quasistatic reduction
is used to eliminate the transverse shear variables from the
section structural relations.
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The second structural model is Euler-Bernoulli beam
theory for isotropic materials with an elastic axis, the
undistorted elastic axis straight within the component. The
Euler-Bernoulli beam theory model with second-order
approximations for the elastic motion is essentially the
technology level of reference 12. The approximations
apply only to the elastic motion however, since the rigid
body motion can still be large, and the kinematics of the
interfaces and rigid body motion are always exact.

It is assumed that the beam axis is straight within the
component. A curved beam axis is not considered because
of its impact on the input data required, and because kinks
require nodes anyway. The geometry and the structural and
inertial properties can be defined in a general manner
relative the beam axis. Yet identification of the beam axis
is not entirely arbitrary, since it has the following
consequences. The structure must be slender relative the
beam axis, allowing application of the beam theory
assumptions. Structural and inertial properties, including
the centroid offset and twist of the principal axes, are
defined in planes perpendicular to the beam axis. The
elastic motion is described by extension, bending, and
torsion of the beam axis. The axes of the engineering
strain and section elastic loads are defined by the
orientation of the beam axis. The beam axis defines the
origin and orientation of the component body axes, hence
the component rigid body motion.

Appendix A describes in more detail these models of the
beam element geometry and material.

Structural Load Calculation

The section load at axial station xL consists of the
section torsion and bending moments, the axial tension,
and the section shear forces. The load acts on the beam
segment extending inboard of xL, at the tension center, in
structural principal axes. The section load can be calculated
from the deflection, or by force balance. Alternatively, the
beam reaction can be calculated at a node using a standard
sensor for the structural dynamic load. This nodal reaction
is essentially a force balance result, obtained from the
interface forces that are always calculated by the solution
procedures of CAMRAD II. The accuracy of the nodal
reaction only depends on the tolerance in the solution for
equilibrium of the beam. However, it is necessary to define
a node (a structural dynamic interface) at the sensor point.

The deflection method obtains the section load from the
elastic motion and structural coefficients. Essentially the
load is evaluated from the stiffness and elastic displacement
at xL: for uncoupled bending, moment = EI times
curvature. The accuracy of this calculation depends on the
accuracy of the representation of the curvature or slope (the
product of the degrees of freedom and shape functions). At

a step in stiffness there should be a corresponding step in
curvature or slope, such that the load remains continuous.
With a small number of shape functions it is not possible
to simulate such a step well, so the results for the reaction
will not be accurate near a step in stiffness. Also, the
theory does not imply continuity of curvature on the two
sides of a node; and the deflection method gives zero load
on an element without elastic degrees of freedom.

A force balance method has been developed that obtains
the section load from the difference between the applied
forces and inertial forces acting on the beam segment to
one side of xL. The section loads calculated using the
forces on either side of xL are combined, so that this sensor
gives at the beam ends the same result as the nodal
reaction. The resulting expression can be evaluated like the
rigid body equations of motion, with the addition of an
axial weighting function. The force balance method can
capture the steps in the section load produced by discrete
loads on the beam. For structural dynamic interfaces and
applied load interfaces, such steps are appropriate (although
the shape functions are not consistent with discrete loads
except at the beam ends). Distributed loads (as from
aerodynamic interfaces) must be treated as such for good
results.

Appendix B describes in more detail the deflection and
force balance methods for structural load calculation.

Limits on Beam Element Deflection

Before comparing the second-order and exact models of
the beam geometry, general limits on the amplitude of
bending for a beam element are considered. The component
body axes have origin at one end of the beam, with the x-
axis along the beam axis. The beam element has length l.
The rigid body motion of the component is the motion of
these body axes. Elastic motion is defined by deflection and
torsion of the beam axis, relative the rigid body motion.
Thus the elastic motion at station x consists of (a) axial
deflection u; (b) bending deflections v then w, along the y
and z-axes respectively (this bending produces a rotation of
the cross section); (c) then torsion and a constant twist
about the x-axis. Let r be the arc length along the deflected
beam axis. The notation (…)+ is used for the derivative
with respect to r, while (…)′ is the derivative with respect
to x. The cross-section is perpendicular to the bent beam
axis (until transverse shear and warping deflections are
considered), with β and ζ the rotations of the cross-section
produced by bending deflection. The rotation angles are
obtained from the kinematics of the elastic deflection:

sinβ = w+

sinζ = v+ / (1 − w+2)1/2
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Figure 1. Extension and torsion produced by bending;
assuming equal w and v bending deflection, each
represented by one shape function; displacements divided
by the element length l.
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Figure 2. Calculated normalized curvature κ for a beam
bent in a circle of radius R (curvature obtained from
bending moment).

So β is a rotation about the negative y-axis, produced by
bending w′; and ζ is a rotation about the z-axis, produced
by bending v′.

The magnitudes of sinβ and sinζ are less than one for
values of u, v, and w describing a realizable deflection of
the beam. In addition, the expressions used for cosβ and
cosζ assume that the magnitudes of β and ζ are less than
90 degrees. Hence |w′| < |r′| and w′2+v′2 < r′2 are required.
The elastic extension is small for realistic motion, so the
requirement is |w′| < 1 and w′2+v′2 < 1. The polynomial
shape functions that describe the bending deflection can
violate these requirements, giving an inconsistent
geometric model. Since the rigid motion is defined as the
motion at one end of the beam here, the shape functions
used are orthogonal polynomials that are zero at that end.
Consider an element with only w bending, represented by a
single shape function (h = (x/l)2). Then the limitation on
the elastic deflection at the beam tip is w/l < 1/2. Consider
an element with both w and v bending, represented by two
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Figure 3. Princeton beam test, comparison of measured and
calculated frequencies.

shape functions. Assuming positive curvature all along the
beam length, and the ratio of shape function amplitudes
giving maximum rotation at the tip, then the limitation on
the elastic deflection at the beam tip is w/l < 1/3√ 2 (the
√ 2 factor is from having both w and v bending). So
regardless of other limitations, very large elastic motion
must be modelled using several beam components.

The expressions for the exact extension and torsion
produced by bending can be evaluated analytically if the
bending is represented by only one shape function (the
above requirements ensure that the integrals exist). Figure
1 compares the result with the second-order expressions
(used for both the second-order and almost-exact models of
the beam geometry). While there is a difference between
the models, the difference is small as long as the extension
or torsion produced by bending is itself small.

Beam Bent in a Circle

As an extreme case of the geometry, consider a beam
bent in a circle. The beam stiffness is constant along its
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Figure 4. Princeton beam test, comparison of measured and
calculated tip deflection.

length. The beam is modelled as a number (6 to 24 here) of
identical elements. The kinematics of the rigid body
motion and connections are always exact, so the angles at
the ends of the beam elements must be correct, and the
issue is the evaluation of the elastic curvature from the
deflection. Figure 2 shows the calculated curvature,
normalized by the circle radius; the exact solution is Rκ =
1. The curvature plotted is actually obtained from the nodal
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Figure 5. MIT beam test, comparison of measured and
calculated deflections for BT beam. Deflection at 89.3% L
(divided by beam length L); beam section properties from
VABS.

moment (κ = M/EI), so the result checks the static
solution of the equations of motion, as well as the
evaluation of the geometry. The exact and almost-exact
geometric models give the correct curvature even with large
beam segments. When the curvature is of the order of the
total beam length as in this case, the second-order model is
good only with short beam segments.
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Figure 6. MIT beam test, comparison of measured and
calculated deflections for BT beam. Deflection at 89.3% L
(divided by beam length L); exact kinematics.

Tests of Beams with Large Deflection

Calculations using the exact, almost-exact, and second-
order kinematic models will be compared with
experimental results from the Princeton, MIT, and
University of Maryland beam tests. Modelling the MIT and
University of Maryland beams requires the anisotropic
structural model.

The Princeton beam test, conducted by Dowell and
Traybar (ref. 13), involved an aluminum beam with
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(divided by beam length L); four elements.
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rectangular section. The softer bending direction was called
flap, and the stiffer direction chord. The beam was
cantilevered with the beam axis horizontal, and loaded with
a tip mass. For a root pitch angle of zero, the gravitational
load deflected the beam in chord; for a root pitch angle of
90 deg, it deflected the beam in flap. Beam 2 of reference



7

  
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-30.

0.

30.

60.

90.

120.

150.

radial station, r/R

fl
ap

w
is

e 
m

om
en

t (
N

-m
)

uniform blade properties

force balance method (3 nodes)
deflection method (3 nodes)
nodal reaction (3 or 7 nodes)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-30.

0.

30.

60.

90.

120.

150.

radial station, r/R

fl
ap

w
is

e 
m

om
en

t (
N

-m
) steps in stiffness at nodes

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-30.

0.

30.

60.

90.

120.

150.

radial station, r/R

fl
ap

w
is

e 
m

om
en

t (
N

-m
) steps in stiffness between nodes

Figure 9. Flapwise bending moment calculated for three-
bladed rotor at CT/σ = .065 and µ = .14; at 0 deg azimuth.

13 is considered here. The analysis modelled the beam
using two or four elements. The section properties
(isotropic) were calculated using the data in reference 14,
with the chord stiffness reduced by 5% to match the
measured frequencies better. Figure 3 shows the flap and
chord frequencies. Figure 4 shows the tip bending and
torsion deflection. The bending deflections w and v are in
the undeflected section axes; L is the beam length (not the
element length). The deflections were calculated in the
same manner as they were measured; in particular, the
torsion deflection was derived from horizontal and vertical
deflections of points off the beam axis. In figures 3 and 4,
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Figure 10. Edgewise bending moment calculated for three-
bladed rotor at CT/σ = .065 and µ = .14; at 0 deg azimuth.

measurements are compared with calculations that used the
exact, almost-exact, and second-order kinematic models
(with two beam elements); and the second-order model with
four beam elements. Significant nonlinear effects are
evident with the larger tip loads. With the beam modelled
using only two elements, the second-order model is not
adequate at the larger tip loads. The exact model predicts
the deflection well. The exact and almost-exact models give
essentially the same results. With four beam elements
however, the large deflection effects are captured by the
rigid body motion, and a second-order model of the elastic
motion is adequate.
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Figure 11. MDART wind tunnel test in hover; measured
and calculated blade lag mode stability.

The MIT beam test, conducted by Minguet and
Dugundji (ref. 15), involved a composite beam with
rectangular section. The beam was cantilevered with the
beam axis horizontal, and loaded with a mass at 98.2% of
the beam length L. The bending and extensional deflections
were measured at 89.3% L, for root pitch angles of 0 and
±45 deg. Two beams of reference 15 are considered:
(45/0)3s and (20/−70/−70/20)2a. In Cesnik's notation
(refs. 16 and 17), these are the BT (bending-twist coupling)
and ET (extension-twist coupling) beams. The analysis
modelled the beam using two or four elements. The section
properties (anisotropic) were obtained from VABS
calculations by Cesnik (ref. 16) and from Minguet (ref.
15). Figures 5 to 7 show the deflection. In these figures,
the bending deflections w and v are in the undeflected
section axes; and the abscissa is the normalized load (tip
mass times cosine of root pitch angle). In figure 5,
measurements for the BT beam are compared with
calculations that used the exact, almost-exact, and second-
order kinematic models (with two beam elements); and the
second-order model with four beam elements. The effects of
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Figure 12. MDART wind tunnel test in forward flight, at
CT/σ = .075; measured and calculated blade lag mode
stability.

the anisotropy are evident, as well as significant nonlinear
effects with the larger tip loads. The extensional deflection
is underpredicted (as with other analyses, see ref. 16),
possibly because of experimental error, since the elastic
extension is small and the bending deflection is well
predicted. With the beam modelled using only two
elements, the second-order model is not adequate at the
larger tip loads, but with four elements the results are
much better. The exact and almost-exact models give
essentially the same results. Figure 6 compares the
deflections calculated using section properties from Cesnik
(VABS) and from Minguet. The results are comparable.
Figures 7 shows similar results for the ET beam.

The University of Maryland beam test, conducted by
Chandra, Stemple, and Chopra (ref. 18), involved a
composite box beam. The beam was cantilevered with the
beam axis vertical, and loaded at the tip in bending. The
[45]6 beam of reference 18 is considered here; this is the
B2 (bending-twist coupled) beam in Cesnik's notation
(refs. 16 and 17). The analysis modelled the beam using
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Figure 13. MDART wind tunnel test in hover, and in
forward flight at CT/σ = .075 (updated model with 1-leg
flexbeam); influence of dynamic inflow on calculated blade
lag mode stability.

one, two, or four elements. The section properties
(anisotropic) were obtained from VABS calculations by
Cesnik (ref. 16). Figure 8 shows the bending and twist
rotations. A one pound tip load evidently is in the linear
range. Thus identical results are calculated using the exact,
almost-exact, and second-order kinematic models; for one,
two, or for beam elements. The effect of the anisotropy is
well predicted.

Rotor Blade Loads Calculations

Figures 9 and 10 compare the blade section loads
calculated by the deflection, nodal reaction, and force
balance methods. A three-bladed articulated rotor in forward
flight is considered. Shown are the flapwise and edgewise
bending moments along the blade span, at zero azimuth
angle. The blade is modelled with four beam elements,
hence three nodes at 32%, 60%, and 80% radius (in
addition to nodes required at the hinges and pitch bearing).
Three cases are considered: (a) uniform blade mass and
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Figure 14. MDART wind tunnel test in hover, and in
forward flight at CT/σ = .075 (early model with 1-leg
flexbeam); influence of beam model on calculated blade lag
mode stability.

stiffness properties; (b) steps in bending and torsion
stiffness at nodes (100% to r = .6R, 125% to r = .8R, 75%
to r = R); (c) steps in bending and torsion stiffness between
nodes (100% to r = .5R, 125% to r = .7R, 75% to r = R).
In additional, the nodal reactions are shown for calculations
using seven instead of just three nodes. The deflection
method gives unacceptable results even with uniform blade
properties. The force balance method gives good results at
all radial stations, even with a small number of nodes.

Bearingless Rotor Stability and Loads

The McDonnell Douglas Advanced Bearingless Rotor
(MDART) was tested in the NASA Ames Research Center
40- by 80-Foot Wind Tunnel (refs. 19 and 20). This rotor
was a preproduction version of the MD900 rotor. Four
CAMRAD II models were developed. The "early" model is
based on information available at the time of the wind
tunnel test and during subsequent correlation work (refs. 19
and 20). The "updated" model has changes in the blade
distributed properties (structural, inertial, and aerodynamic),
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Figure 15. MDART wind tunnel test in hover, at CT/σ =
.076; flap bending moment.
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Figure 16. MDART wind tunnel test, at µ = .20 and CT/σ
= .074; flap bending moment.
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Figure 17. MDART wind tunnel test, at µ = .37 and CT/σ
= .075; flap bending moment.

developed based on correlation of other analyses with
nonrotating blade shake test data. For the CAMRAD II
input, the snubber stiffness and damping were adjusted to
match the lag frequency and damping at nominal thrust in
hover (the actual properties of the nonlinear elastomeric
snubber were not known in detail). The basic early and
updated models have a flexbeam consisting of a single load
path. The blade was represented by four beam elements
(one for the swept tip); the pitch case by one element; and
the flexbeam by four elements (the first and last rigid).
Using more elements did not change the results
significantly. The MD900 flexbeam is actually attached to
the hub through two legs inboard of 8.3% radius. Therefore
a two-leg flexbeam model was also constructed, using the
CAMRAD II core input capability to revise the one-leg
model constructed by the rotorcraft shell. Estimates of the
structural and inertial properties of the two legs were used.
The blade loads were calculated in the same manner as they
were measured: the results shown are the load minus the
zero point load (nonrotating with blades on the flapping
stop); weight tares are not included.
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Figure 18. MDART wind tunnel test in hover, at CT/σ =
.076; lag bending moment.
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Figure 19. MDART wind tunnel test, at µ = .20 and CT/σ
= .074; lag bending moment.
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Figure 20. MDART wind tunnel test, at µ = .37 and CT/σ
= .075; lag bending moment.

Figures 11 and 12 compare the measured and calculated
blade stability, for the four models of the rotor. The
calculated trends with thrust and speed are correct. Note that
for the speed sweep, the shaft angle varies with speed until
an advance ratio of µ =.4, and then is fixed at −10 deg to
match the test conditions. The four models produce similar
results for the damping, which gives confidence in results
obtained early in the rotor development process for such a
bearingless rotor configuration. Figure 13 shows the
influence of dynamic inflow on the calculated lag mode
stability (for the updated, 1-leg flexbeam model). Dynamic
inflow has a moderate influence in hover, decreasing lag
damping. Figure 14 shows the influence of the beam
kinematic model on the stability (for the early model).
With the number of beam elements used in this model,
second-order kinematics for the elastic motion is adequate.

Figures 15 to 20 compare the measured and calculated
bending moments, in hover and forward flight. The
calculated mean flap loads are good with the updated model
(figures 15 to 17); the early model underpredicts the pitch



12

   
0.0 0.2 0.4 0.6 0.8 1.0

-200.

0.

200.

400.

600.

radial station, r/R

fl
ap

 b
en

di
ng

 m
om

en
t (

ft
-l

b)
, m

ea
n

1-leg, trim zero flap
2-leg, trim zero flap
1-leg, trim hub moment
measured blade and flexbeam
measured pitch case

 
0.0 0.2 0.4 0.6 0.8 1.0

0.

50.

100.

150.

200.

radial station, r/R

os
ci

lla
to

ry

Figure 21. MDART wind tunnel test, at µ = .37 and CT/σ
= .075 (updated model, rigid wake geometry); flap bending
moment.

case load. The variations in the calculated load near 30%
radius are caused by the values used for the twist of the
structural principal axes. The free wake geometry is needed
for good results at the tip in hover. At µ =.20 advance
ratio, the calculated oscillatory flap loads are good with the
updated model and free wake geometry. At µ =.37 advance
ratio, the calculated oscillatory flap loads are low on the
pitch case and the blade tip. The calculated mean lag loads
are good with the updated model, except at 60% radius
(figures 18 to 20). This discrepancy might be a result of
the values used for the chordwise offset of the tension
center. The calculated oscillatory loads are low.

Figures 21 and 22 show the influence of hub moment
trim on the oscillatory bending loads at .37 advance ratio.
In the calculations, the rotor is trimmed to zero flapping
(as in figures 15 to 20) or trimmed to the measured hub
moment. While the test was generally conducted with the
rotor trimmed to small flapping (flapping being derived
from a flexbeam bending moment measurement), this test
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Figure 22. MDART wind tunnel test, at µ = .37 and CT/σ
= .075 (updated model, rigid wake geometry); lag bending
moment.

point had significant hub moments. Hence trimming to the
measured hub moment improves the calculated oscillatory
loads substantially, while the calculated mean loads were
unaffected. Figures 21 and 22 also show the loads
calculated using the 2-leg flexbeam model. There are
differences between the results of the 1-leg and 2-leg
models, but probably refining the structural dynamic
properties of the 1-leg model would be most productive in
improving the calculations. Calculations were also
performed to investigate the influence of the beam
kinematic model on the blade loads. No significant
differences were obtained using the exact or almost-exact
models, compared to the second-order model.

Figures 23 and 24 compare the MDART bending loads
calculated by the deflection and force balance methods. The
deflection method gives unacceptable results. The loads
obtained from the force balance method exhibit more
reasonable behavior.
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Figure 23. MDART wind tunnel test, at µ = .37 and CT/σ
= .075 (updated model, rigid wake geometry); flap bending
moment.

Concluding Remarks

Recent developments of the dynamics models for the
comprehensive analysis CAMRAD II have been described,
specifically advanced models of the geometry and material
for the beam component, and a force balance method for
calculating section loads.

Calculations show good correlation with measurements
for beams undergoing large deflection. Significant effects
of nonlinearity and anisotropy are evident, and are well
predicted by the analysis. Calculations of bearingless rotor
stability and bending loads compare well with full-scale
wind tunnel measurements.

With a reasonable number of elements representing the
beam or rotor blade, any large deflection effects are captured
by the rigid body motion (always exact in CAMRAD II),
and a second-order model of the beam element elastic
motion is adequate. For the bearingless rotor considered
here, seven elastic elements were used for the blade, pitch
case, and flexbeam. For an articulated blade with
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Figure 24. MDART wind tunnel test, at µ = .37 and CT/σ
= .075 (updated model, rigid wake geometry); lag bending
moment.

rectangular planform, three or four elements are usually
sufficient. Even in cases of extremely large bending
amplitude, the exact expressions for extension and torsion
produced by bending (which require significant
computation time to evaluate by numerical integration)
need not be used.

The deflection method gives unacceptable results for the
structural loads in practical cases, and even with uniform
blade properties. The force balance method described here
gives good results, available at any radial station, without
requiring a large number of nodes.
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APPENDIX A: Beam Element Model

For the beam component, the elastic motion is represented by the deflection, extension, and torsion of the beam axis. The

rigid motion describes the motion of one end of the beam. The elastic motion is measured relative to the rigid motion. The

undeflected structure has a straight beam axis, of length �. The beam axis is assumed to be on the positive x-axis of the body

axes frame. Thus the origin of the body axes is located at one end of the beam, with the beam extending from x = 0 to x = �.

Pitch angles are measured from the x–y plane, positive for rotation about the x-axis. The structural and inertial properties of the

undeflected beam include: θC , pitch of the structural principal axes; yC and zC , offset of the tension center (modulus-weighted

centroid) from the beam axis, relative the principal axes; kP , modulus-weighted radius of gyration, about the beam axis; θI ,

pitch of the inertial principal axes; yI and zI , offset of the center of gravity (mass-weighted centroid) from the beam axis,

relative the principal axes. In the following, the notation Cβ = cosβ, Sβ = sinβ is used. For a rotation matrix, the notation

C = XαYβZγ means a rotation by the angles γ, then β, and then α about the z, y, and x-axes respectively.

Beam Cross-Section Motion

The theory requires the motion of a point on the beam cross-section. For the structural contributions to the equations of

motion, the effects of warp and transverse shear must be considered. The position of a cross-section point relative the body axes

is constructed as follows. (a) Constant axial position x; (b) then elastic axial deflection u along the x-axis; (c) then rotation of

the cross-section by ν then ω, produced by transverse shear deformation; (d) then elastic bending deflections v then w, which

produce rotation of the cross-section axes; (e) then elastic torsion, and a constant rotation θX about the x-axis; (f) then the

position relative the bent and rotated cross-section axes, including warp W of the cross-section. The pitch angle θX = θC for

the structural analysis, and θX = θI for the inertial analysis (section principal axes). The warp displacement W can have three

components. Thus the position on the cross-section is:

rB =

x+ u
v
w

 + C

 0
η
ζ

 + C

W1

W2

W3


where the variables η and ζ identify the cross-section point, relative the section principal axes at θX . The variables x, η, and ζ

are curvilinear coordinates of the beam. The section is rotated by the matrix C: C = (Z−νYω)CBE = (Z−νYω)(Z−ζYβX−θ).
The section warping displacement can in general be described by a set of warping functions Si and scalar amplitudes Ai:

W = (W1,W2,W3)T =
∑

i Si(η, ζ)Ai(x) (for example, ref. 9). From the virtual displacement δW , differential equations

(in x) are obtained for the amplitudes Ai (static equations if the inertial effects of warping are neglected). Here it is assumed

that these equations are solved to eliminate the warping variables, so the effects of warp are accounted for in the section elastic

constants. For an isotropic beam with an elastic axis, St.Venant’s torsional warping function can be used: W1 = λφ′. For

simplicity, this expression may also be used in the equations presented here for an anisotropic beam, although the analysis used

to obtain the section elastic constants must fully consider the effects of warp.

To describe the geometry of joints, connections, and interfaces on the beam, the effects of warp and transverse shear

can be neglected. Then the position of a location on the beam axis, relative the body axes, is: xB = (x + u, v, w)T and

CEB = XθY−βZζ . The order of the bending (v then w) follows from the use of Euler angles to describe the rotation of the

section. If Rodrigues parameters were used instead, the bending deflections would be treated identically. Here the cross-section

is still perpendicular to the bent beam axis, and β and ζ are the rotations of the cross-section produced by bending deflection.

The rotation angles are obtained from the kinematics of the elastic deflection. Let r be the arc length along the deflected beam

axis. The notation (. . .)+ is used for the derivative with respect to r, while (. . .)′ is the derivative with respect to x. Then

comparing the tangent to the beam axis and the rotation matrix C, the rotation angles are: Sβ = w+, Sζ = v+/
√

1 − w+2,
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Cβ =
√

1 − S2
β , Cζ =

√
1 − S2

ζ . So β is a rotation about the negative y-axis, produced by bendingw′; and ζ is a rotation about

the z-axis, produced by bending v′. For moderate deflections, it is possible to simplify the relations, consistent with second-

order accuracy of the equations of motion. The second-order approximation for the geometry uses the following expressions:

Sβ = w′, Sζ = v′, Cβ =
√

1 − S2
β , Cζ =

√
1 − S2

ζ . With such approximations, the rotation matrix is still proper, and so

the kinematics of connections with other components remain exact. Further approximations are possible for the equations of

motion.

Extension and Torsion Produced by Bending

Bending of the beam (v and w deflection) produces axial and torsional displacements. The extension u and pitch angle θ

of a bent beam are thus nonzero even for large axial and torsional stiffnesses. These variables are therefore defined as the sum

of elastic motion and motion produced by bending: u = ue +U and θ = θC + φ+ Θ. Here ue and φ are quasi-coordinates for

the elastic extension motion and elastic torsion motion respectively. For large axial and torsional stiffnesses, ue and φ approach

zero. Bending deflection produces the extension U and rotation Θ. The first term in θ is the pretwist of the structural principal

axes (which can be replaced by θI or zero, depending on the geometry required). The elastic torsion φ is defined considering

the curvature of the beam about the x-axis: κx = θ+ + Sβζ
+ = (θC + φ)+. Hence the torsional displacement produced by

bending is:

Θ = −
∫ r

0

Sβζ
+ dr = −

∫ x

0

Sβζ
+r′ dx = −

∫ x

0

Sβζ
′ dx = −

∫ x

0

w′ζ+ dx

If there is no elastic extension of the beam, then r′ = dr/dx = 1, which gives the axial displacement produced by bending:

u′bend =
√

1 − (v′ 2 + w′ 2) − 1. Typically therefore the total axial displacement is written

u = ue +
∫ x

0

[√
1 − (v′ 2 + w′ 2) − 1

]
dx = ue + U

It is simpler (and equivalent to second order) to instead define the elastic extension as r′ = 1 + u′e, so

u = ue +
∫ x

0

[√
(1 + u′e)2 − (v′ 2 + w′ 2) − (1 + u′e)

]
dx = ue + U

To second order in the displacement (or third order if ue = 0), the extension and torsion produced by bending are as follows:

U2 = − 1
2

∫ x

0
(v′ 2 + w′ 2) dx and Θ2 = −

∫ x

0
w′v′′ dx. These approximations for U and Θ are used for the second-order and

almost-exact geometric models. They are accurate for moderate deflection, specifically as long as v′ 2, w′ 2, and u′e are small

compared to 1. For the exact geometric model, the extension and torsion produced by bending are written U = U2 + ∆U and

Θ = Θ2 + ∆Θ. The increments ∆U and ∆Θ are evaluated by numerical integration.

Elastic Variables and Shape Functions

The elastic motion of the beam is described by the variables ue, v, w, and φ, as a function of beam axial station x. This

motion is discretized using generalized coordinates q(t) and shape functions h(x). The rigid motion of the entire component is

contained in the motion of the body axes, which is the motion at one end of the beam. The generalized coordinates q represent

the elastic motion, measured relative to that rigid motion. So the model does not use degrees of freedom that represent the

total motion (nodal coordinates) for the other end of the beam. A finite element analysis typically uses Hermite polynomials

for the shape functions, so the degrees of freedom are displacement and rotation at the nodes. Here the shape functions are

instead orthogonal polynomials for the elastic motion. Typically three shape functions are used for axial deflection, and two

shape functions each for bending and torsion (a fifteen degree-of-freedom component, six rigid and nine elastic); which gives

cubic displacements and quadratic rotation, hence quadratic tension and linear moments along the beam. As implemented,
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the beam component allows a maximum of four shape functions for axial deflection and torsion, and three shape functions for

bending (fourteen elastic degrees of freedom). The effects of transverse shear are introduced by variables ω and ν that rotate

the cross-section (in addition to the rotation produced by bending). These variables can be nonzero at both ends. However, by

means of a static reduction the structural analysis accounts for the transverse shear effects in the section elastic constants, so ω

and ν do not remain as degrees of freedom for the component. Bending of the beam produces axial and torsional displacements.

For the second-order approximation, U2 and Θ2 can be expressed as quadratic functions of the bending degrees of freedom qv

and qw, with the coefficients integrated analytically.

Strain Energy

Evaluation of the strain energy begins with the analysis of strain (refs. 21 to 23). The Green-Lagrange strain tensor is

obtained from the metric tensors of the undistorted and distorted beams (gmn and Gmn). In terms of curvilinear coordinates

ym = (x, η, ζ), the undistorted and distorted position vectors are:

r =

x
0
0

 +X−θC

 0
η
ζ

 R =

x+ u
v
w

 + C

 0
η
ζ

 + C

W1

W2

W3


Here x is the distance along the straight beam axis, while η and ζ specify a position on the cross-section plane (parallel to the

structural principal axes, but the origin is not necessarily at the tension center). Assuming small strain, the section loads can be

expressed as linear combinations of the moment strain measure κ and force strain measure γ:

κ = K − k γ = CT

 1 + u′

v′

w′

 −

 1
0
0

 =

 ε11
2 ε12
2 ε13


where K̃ = CTC ′, k̃ = XθC

X ′
−θC

, and k = ( θ′C 0 0 )T (ref. 4). It can be shown that that Kx = θ′C + φ′, so κx = φ′; and

γx = ε11 = u′e. Hence to second order:

κ = Xθ


0

−ω′

ν′

 +Xθ


φ′

−β′

Cβζ
′

 = Xθ


φ′

−w′′ − ω′

v′′ + ν′



γ = Xθ


1 v′ + ν w′ + ω

−(v′ + ν) 1 0

−(w′ + ω) 0 1




1 + u′

v′

w′

 −


1

0

0

 = Xθ


u′e

−ν
−ω


with θ ∼= θC + φ here. Without the shear deformation, the second-order moment strain measure is:

κ =


φ′

−Cθw
′′ + Sθv

′′

Sθw
′′ + Cθv

′′


For the geometrically exact model, rotation of the deformed section gives

K = R


θ′

β′

ζ ′

 = Xθ


θ′ + Sβζ

′

−β′

Cβζ
′

 = Xθ


θ′C + φ′

−β′

Cβζ
′


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From Θ′ = −Sβζ ′, there follows Kx = θ′ + Sβζ
′ = θ′C + φ′, and so κx = φ′ exactly. Then the moment strain measure is:

κ = Xθ


φ′

−β′

Cβζ
′


The basis vectors of the undistorted and distorted beam are gm = ∂r/∂ym and Gm = ∂R/∂ym respectively. Then the metric

tensors are gmn = gm ·gn andGmn = Gm ·Gn; and the Green-Lagrange strain tensor is obtained from fmn = 1
2 (Gmn−gmn).

The basis vector g1 is tangent to the line described by constant η and ζ, which is a helix for a beam with pretwist (θ′C �= 0).

So g1 is not perpendicular to g2 and g3. Using the strain γmn = fmn is equivalent to assuming that the axial stress follows

the basis vectors in the twisted beam. It is generally more appropriate to assume that the constitutive relation is defined in local

rectangular Cartesian coordinates zk. The unit vectors of zk are ek = (i,g2,g3). Thus the strain tensor γmn is related to fmn

by fmn = (∂zk/∂ym)(∂zl/∂yn)γkl, where ∂zk/∂ym = ek · gm. Here the transformation

[
∂zk
∂ym

]
=


1 0 0

−θ′Cζ 1 0

θ′Cη 0 1


gives γ11 = f11 + 2θ′C(ζf12 − ηf13). With the assumption of small strain, γmn

∼= εmn, where εmn is linear in the strain

measures. Thus

ε11 =
1
2

(G11 − g11) + 2θ′C(ζε12 − ηε13)

∼= u′e − κzη + κyζ + 1/2φ
′ 2(η2 + ζ2) + 2θ′C(ζ ε12 − η ε13) + θ′Cφ

′(ζλη − ηλζ)

2ε12 = G12 − g12 ∼= 2 ε12 + (λη − ζ)φ′

2ε13 = G13 − g13 ∼= 2 ε13 + (λζ + η)φ′

is the required strain. The nonlinear term producing coupling between extension and torsion is conventionally retained in ε11.

In the final expression for each strain, the representative warping function W1 = λφ′ has been used. It is understood that the

complete effects of warp must be considered when the section elastic constants are evaluated.

From Hamilton’s principle, the strain energy is the integral over the structure of the product of the stress and strain:

δU =
∫
δεTσ dΩ. The stress is obtained from the strain by the constitutive law σij = Eijklεkl. Beam theory assumes that

only the stresses acting the plane perpendicular to the beam axis are important. So σ22, σ33, and σ23 are neglected, and the

constitutive law reduces to: σ11

σ12

σ13

 =

Q11 Q15 Q16

Q51 Q55 Q56

Q65 Q65 Q66

 ε11
2ε12
2ε13


The strain energy can now be written in terms of the section loads:

δU =
∫ ∫

δεTσ dAdx =
∫ �

0

[
Fxδu

′
e + Fy2δε12 + Fz2δε13 +Mxδφ

′ +Myδκy +Mzδκz

]
dx

The section loads are obtained from the stress, and hence from the section strain measures. At this point the effects of transverse

shear are statically eliminated, reducing the 6× 6 matrix T to the 4× 4 matrix S. Generally it is appropriate to neglect the shear

force (not the shear strain), so T is inverted, the Fy and Fz rows and columns of T−1 are eliminated to produce S−1, and the

inverse of the resulting matrix gives S. At a constrained end, assuming zero shear strain might be more appropriate; then S is
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simply obtained by eliminating the Fy and Fz rows and columns of T . Including the nonlinear terms coupling extension and

torsion, the section loads are:
Fx

Mx

My

Mz

 =


Suu Suφ + 1/2φ′Suuk2

P Suw Suv

Sφu + φ′Suuk2
P Sφφ Sφw Sφv

Swu Swφ Sww Swv

Svu Svφ Svw Svv



u′e

φ′

κy

κz


Using the beam theory for anisotropic or composite materials including transverse shear deformation, the section elastic constants

S are the input quantities required by this component.

Finally, the strain energy is obtained using Euler-Bernoulli theory for a beam of isotropic materials with an elastic axis.

Transverse shear effects are neglected, and the elastic axis is the beam axis, which is straight within the component. The

constitutive law is now: σ11

σ12

σ13

 =

E 0 0
0 G 0
0 0 G

 ε11
2ε12
2ε13


Then the section loads are obtained from the stress, and hence from the section strain measures:

Fx

Mx

My

Mz

 =


EA θ′CEAk2

T + 1/2φ′EAk2
P EAzC −EAyC

θ′CEAk2
T + φ′EAk2

P GJ + θ′ 2C EIpp θ′CEIzp −θ′CEIyp
EAzC θ′CEIzp ÊIzz −ÊIyz
−EAyC −θ′CEIyp −ÊIyz ÊIyy



u′e

φ′

κy

κz


These section integrals are evaluated relative the elastic axis, but are conventionally defined relative the tension center instead.

The higher-order section integrals EIxp, EIzp, and EIpp are seldom available, and so are neglected for this model. Thus


Fx

Mx

My

Mz

 =


EA θ′CEAk2

T + 1/2φ′EAk2
P EAzC −EAyC

θ′CEAk2
T + φ′EAk2

P GJ 0 0

EAzC 0 EIzz + EAz2
C −EAyCzC

−EAyC 0 −EAyCzC EIyy + EAy2
C



u′e

φ′

κy

κz


is the result for the section loads.

In the above structural analysis, it was assumed that the constitutive relation is defined in local rectangular Cartesian

coordinates. The consequence of this assumption is a distinction between the torsion moments produced by elastic torsion φ′

and by pretwist θ′C , in the presence of a tension force: Mx = (GJ + Fxk
2
P )φ′ + Fxk

2
T θ

′
C (see, for example, ref. 24). For a

circular cross-section, kT must be zero, since pretwist is not then meaningful with isotropic materials. If instead the constitutive

law is applied in the curvilinear coordinates, the axial strain is

ε11 =
1
2

(G11 − g11) ∼= u′e − κzη + κyζ + (θ′Cφ
′ + 1/2φ

′ 2)(η2 + ζ2) +W ′
1

Then kT = kP , and the torsion moment is Mx = (GJ +Fxk
2
P )φ′ +Fxk

2
P θ

′
C . This result often has been obtained (as in ref. 25)

by explicitly making the assumption that the axial stress is tangent to the line described by constant η and ζ, which is a helix

for a pretwisted beam. Such an assumption might be appropriate for an anisotropic beam. In general, the extension/torsion

coupling is defined by the section constant kT for an isotropic beam, or Suφ = Sφu for an anisotropic beam.
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Kinetic Energy

Using the d’Alembert approach, in which inertial acceleration is treated as a body force, the virtual work of the inertial

and gravitational forces is δT =
∫∫

(δrI)T (r̈I − gI) dmdx. The integration is over the section mass and then the beam length.

The acceleration relative the inertial frame is the sum of the motion of the body axes relative the inertial frame, and the motion

of a point on the beam relative the body axes. The kinematics of the rigid body motion are always exact. For the geometrically

exact model, the motion of a point on the beam cross-section, relative the component body axes, is:

rB =


x+ u

v

w

 +


−Sζ
Cζ

0

 ηb +


−SβCζ

−SβSζ
Cβ

 ζb

The variables ηb and ζb identify the cross-section point, relative relative section axes that are bent but not twisted. With the

second-order model

rB =


x+ u

v

w

 +


−v′

1

0

 ηb +


−w′

0

1

 ζb

is the approximate position on the cross-section.

APPENDIX B: Structural Load Calculation

Deflection Method

The deflection method obtains the section load from the elastic motion and structural coefficients. The structural analysis

provides expressions for the reactions at the beam axis, from which bending moments at the tension center can be obtained.

Thus the section load from the deflection method is
Fx

Mx

MyTC

MzTC

 =


Suu Suφ + 1/2φ′Suuk2

P Suw Suv

Sφu + φ′Suuk2
P Sφφ Sφw Sφv

Swu − SuuzC Swφ − (Suφ + 1/2φ′Suuk2
P )zC Sww − SuwzC Swv − SuvzC

Svu + SuuyC Svφ + (Suφ + 1/2φ′Suuk2
P )yC Svw + SuwyC Svv + SuvyC



u′e

φ′

κy

κz


(anisotropic); or

Fx

Mx

MyTC

MzTC

 =


EA θ′CEAk2

T + 1/2φ′EAk2
P EAzC −EAyC

θ′CEAk2
T + φ′EAk2

P GJ 0 0

0 −(θ′CEAk2
T + 1/2φ′EAk2

P )zC EIzz 0

0 (θ′CEAk2
T + 1/2φ′EAk2

P )yC 0 EIyy



u′e

φ′

κy

κz


(isotropic). The torsion moment is Mx, the bending moments are My and Mz , and the axial tension force is Fx; the shear forces

are not available with the deflection method.

Force Balance Method

The force balance method obtains the section load from the difference between the applied forces and inertial forces acting

on the beam segment to one side of xL. The position of the tension center at span station xL, from the origin of the body frame,

20



is rL. The difference between the applied forces and the inertial forces, acting on the segment of beam outboard of xL is:

FL+ =

[ ∑
x>xL

F −
∫ �

xL

∫
(a− g) dmdx

]

ML+ =

[ ∑
x>xL

(M + (x̃− r̃L)F ) −
∫ �

xL

∫
(r̃ − r̃L)(a− g) dmdx

]

The difference between the applied forces and the inertial forces, acting on the segment of beam inboard of xL is:

FL− = −
[ ∑
x<xL

F −
∫ xL

0

∫
(a− g) dmdx

]

ML− = −
[ ∑
x<xL

(M + (x̃− r̃L)F ) −
∫ xL

0

∫
(r̃ − r̃L)(a− g) dmdx

]

All terms are transformed to the bent cross-section axes. The first term is the summation of all applied loads (forces F and

moments M , acting at position x relative the origin of the body frame) outboard or inboard of xL; the summation becomes an

integral for distributed loads. The second term is the integral of the inertial accelation a and gravitational acceleration g acting

on the element of mass (dmdx) at position r (relative the origin of the body frame). The section loads calculated using the

forces on either side of xL are combined, such that this sensor gives at the beam ends the same result as the nodal reaction. Thus

FL = (xL/�)FL+ + (1 − xL/�)FL−

ML = (xL/�)ML+ + (1 − xL/�)FM−

or

FL =
[∑

WF −
∫ ∫

W (a− g) dmdx

]
ML =

[∑
W (M + x̃F ) −

∫ ∫
Wr̃(a− g) dmdx

]
− r̃LFL

with the weighting function

W =
{
xL/� x > xL
xL/�− 1 x ≤ xL

The required sums and integrals can be evaluated like the rigid body equations of motion, with the addition of the weighting

function W . However, Gaussian integration of the inertial forces does not treat the step in W accurately. The integrated inertial

load is continuous with xL if the integrand at xL is handled analytically. So the quadrature becomes

F =
∫ �

0

Wf(x) dx =
∫ �

0

W
(
f(x) − f(xL)

)
dx+

∫ �

0

Wf(xL) dx =
�

2

N∑
i=1

wiW (xi)
(
f(xi) − f(xL)

)
where xi = (ξi + 1)(�/2), for Gaussian points ξi and weights wi. The force balance method can capture the steps in the

section load produced by discrete loads on the beam. For structural dynamic interfaces and applied load interfaces, such steps

are appropriate (although the shape functions are not consistent with discrete loads except at the beam ends). Distributed loads

(as from aerodynamic interfaces) must be treated as such for good results. Consider an aerodynamic load uniformly distributed

over a panel of width δ, centered at xF . Then the weighting function for distributed aerodynamic forces is WA =
∫ �

0
WDdx,

where D = 1/δ over the aerodynamic panel and zero elsewhere. The result is equivalent to using a ramp from xL − δ/2 to

xL + δ/2 instead of a step in W as a function of x. The weighting function WA is used for the aerodynamic forces in FL and

the aerodynamic moments in ML. A distributed force also produces a moment on the beam, leading in a similar fashion to

xFWF =
∫ �

0
WxDdx. The weighting function WF is used for the aerodynamic forces in ML.
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